QCD et diffraction à DØ

Section Efficace Inclusive des Jets

Jean-Laurent Agram GRPHE Strasbourg-Mulhouse

DØ France - novembre 2004

La physique des jets au Run II

Sections efficaces plus importantes avec $\sqrt{s} = 1.96$ TeV, surtout à grand p_T

- contraintes sur PDFs : Gluon à grand x surtout sensible à grande rapidité et grand p_T
- tests pQCD
- nouvelle physique: sous-structure des quarks, physique au-delà du Modèle Standard

Formule principale :

$$\langle rac{\mathrm{d}^2\!\sigma}{\mathrm{d}\mathbf{p_T}\,\mathrm{d}\mathbf{y}}
angle = rac{\mathrm{N_{jet}}}{\mathcal{L}} \, rac{1}{\epsilon_{\mathrm{eff}}} \, \mathrm{C_{unsm}} \, rac{1}{\Delta \mathrm{p_T}\,\Delta \mathrm{y}}$$

Njet nombre de jets après toutes les coupures

L luminosité

Ceff produit des efficacités sur les coupures de sélection des événements et des jets

Cunsm correction due à l'unsmearing (résolution en pT)

- ΔpT largeur du bin en pT
- ∆y largeur du bin en rapidité

Erreurs systématiques

Erreurs systématiques dominées par JES, particulièrement à grande rapidité

Avancement de mon analyse pour : Moriond 2004 Ma thèse

Principaux changements :

2 bins dans la région centrale et 2 bins dans la région avant

- largeur de l'intervalle en rapidité : 0.5 -> 0.4
- nouvelles corrections JES (principale source d'erreur)

Moriond 2004

Ma thèse

Jean-Laurent Agram

DØ France - novembre 2004

Spectre en masse des dijets

Moriond 2004

Pavel Demine, Christophe Royon

JES est la principale source d'incertitude

Avenir de ces 2 analyses

But : publication pour le printemps 2005 ??

- Améliorations nécessaires avant publication :
 - améliorer les corrections sur JES (corrélations des erreurs)
 - détermination de l'efficacité absolue des triggers (à partir trigger µ)
- Autres améliorations en vue :
 - augmenter la statistique : $143 \text{ pb}^{-1} \rightarrow 450 \text{ pb}^{-1}$ données pass2
 - comprendre la dépendance de la section efficace avec \mathcal{L}_{inst}
 - déterminer la résolution angulaire à partir des MC (surtout pour la partie avant du calorimètre)

Idée: publier le rapport des sections efficaces inclusives → étudier corrélation des erreurs, améliorer le calcul des efficacité

Analyse soumise à PRL: décorrelation en ΔΦ

Alexander Kupco, Michael Begel, Pavel Demine, Christophe Royon, Markus Wobisch, Marek Zielinski

- production de 3 jets au NLO pQCD:
 - radiation soft → petite décorrelation
 ΔΦ_{1,2} ~ π (divergence in LO)
 - radiation hard (grand k_T)→ grande décorrelation ΔΦ_{1,2} < π
 - distribution
 \Delta \Phi est sensible au ordre élevés de radiation, sans mesurer explicitement le 3^e ou 4^e jet
- Observable: $\frac{1}{\sigma_{dijet}} \cdot \frac{d\sigma_{dijet}}{d\Delta \phi_{dijet}}$ section efficace différentielle normalisée
 - 4 bins en pT du leading jet , pour les jets centraux lyl< 0.5,

Jean-Laurent Agram

iet 2

ΔΦ.

jet 1

Ajuster les générateurs

- 2→2 LO pQCD, teste processus de radiation:
 - 3^e ou 4^e jets générés par gerbe de partons (phénomenologique)
- HERWIG 6.505
 - décrit bien les données, même Δφ~π
- PYTHIA 6.223
 - mauvaise description avec les paramètres par défaut
 - changement du paramètre gérant l'Initial State Radiation PARP(67)=1.0→4.0
 - améliore la description
- permet d'ajuster les générateurs Monte-Carlo

important pour LHC

Jean-Laurent Agram

Diffraction : détection

Gap en rapidité

Diffraction : détection

Gap en rapidité

Luminosity Monitors Off 2.7<lηl<4.4 Veto Counters Off 5.2<lηl<5.9

$$\label{eq:Embedded} \begin{split} \hline Forward\ energy\ sum < 10\ GeV: \\ & \sum E_{\rm cell} < 10\ GeV \\ cellules\ du\ calorimètre\ 2.6 < l\eta| < 5.3 \\ & au-dessus\ d'un\ seuil \\ (E_EM > 100\ MeV,\ E_FH > 200\ MeV). \end{split}$$

DØ France - novembre 2004

Entièrement opérationnel :

le détecteur et bientôt le

trigger

FPD

1ers événements diffractifs $Z \rightarrow \mu + \mu -$

- Evénements diffractifs $Z \rightarrow \mu + \mu$ avec gap en rapidité
 - Détection des muons indépendante de celle des gaps
 - bonne pureté de l'échantillon

diffusion élastique

$$|t| = (p_f - p_i)^2$$

$$\xi = 1 - p_f / p_i$$

- Elastic scattering: ξ=0, t > 0.8 GeV²
- Mesure de dσ/dt pour la diffusion élastique avec une partie du FPD
- résultats de différentes expériences

Analyses diffractives qui débuttent

- dijet diffractif (sonde structure en q, g du IP)
- W/Z diffractifs
- jets de b diffractifs
- ΔΦ des protons (étude de la probabilité de survie des gaps)
- χ_c diffractif