

Recherche de particules supersymétriques dans le contexte de la R-parité violée avec couplage λ₁₃₃

- R-parité violée avec couplage λ₁₃₃ : scénario et situation expérimentale
- Identification des taus hadroniques
- Premiers résultats, améliorations, perspectives ...

Anne-Catherine Le Bihan

Réunion D0-France, 9 novembre 2004

Scénario de la R-parité violée avec couplage λ_{133}

Situation expérimentale : limites du LEP

Couplage λ_{133} : efficacité du signal la plus basse des analyses LLE. Résultats utilisés pour mettre des limites conservatives sur la masse du χ_1^0 quel que soit le couplage.

Identification des taus dans leurs modes hadroniques

Identification des τ dans leurs modes hadroniques

Candidat tau :

- cluster calorimétrique construit par algorithme simple cone (cone R= 0.3, cone d'isolation R=0.5)
- sous-clusters dans les couches electromagnetiques du calorimètre, en résence de π⁰ parmi les décroissances du tau
- traces dans un cone de 0.5 compatibles avec la masse du tau

τ hadroniques : classification en types

conversions

- Selon la réponse du détecteur le tau hadronique est classifié en trois catégories :
 - <u>type I : τ→πν type :</u> I trace, cluster CAL, pas de sous-cluster EM
 - type 2 : τ→ρν type : I trace, cluster CAL, pas de sous-cluster EM
 - <u>type 3 : 3 prongs type :</u> au moins
 2 traces

inter-cryostat region with less
 EM layers

Exemples de variables d'entrée des réseaux de neurones

Z→TT

MC QCD

QCD data

Réseaux de neurones pour l'identification des T

Efficacités NN>0.8 :

	type l	type 2	type 3
background	0.145 ± 0.014	0.042 ± 0.004	0.039 ± 0.02
z→тт	0.78 ± 0.03	0.74 ± 0.015	0.73 ± 0.02

Autres bruits de fond que les jets QCD? Contamination des électrons

Utilisation d'une coupure en pour supprimer les électrons tight. Est-ce que des électrons loose* sont encore identifiés comme taus ? Méthode

"tag and probe" pour les électrons loose dans le pic du Z : 41.8 ± 0.6 % identifiés comme taus

Utilisation d'un réseau de neurones supplémentaire destiné à supprimer les électrons : 7.2±0.3 % reconnus comme taus

```
M(e tight + τ après coupure sur le NN
contre les électrons)
```

M(tight electron + loose electron)

* electron loose : toutes coupures appliquées sauf celle sur le likelihood

Estimation du facteur correctif data/MC pour l'efficacité des NN(QCD)

- Source de taus hadroniques dans les données : Z→ττ→ ^Te/μ^Thadr sélectionnés par un trigger leptonique
- Création d'un lot de données enrichi en Z→ττ→ μτ_{hadr} :

 $\Delta \phi$ (μ, τ)>2.7, 20<|M(μ, τ)|<60, pT(μ)>14, pT(τ)>8 candidat τ :

- NN(e) \rightarrow 0.9 \rightarrow réduire les electrons
- $R_{trk}^{\tau} = (E^{\tau} E_{CH}^{trk}) / p_T^{trk} > 0.7 \rightarrow \text{réduire les } \mu$

- type 1 et 2 seulement

Séparation du lot en 2 sous-lots :

τ et μ ont signe opposé: lot enrichi en $Z \rightarrow \tau \tau \rightarrow \tau \mu$ τ et μ ont même signe : lot de bruit de fond

Estimation du contenu en $Z \rightarrow \mu \tau$ du lot enrichi OS

Variables d'entrée des réseaux de neurones

After NN cut

Sélection de 2 électrons plus au moins 1 tau hadronique

Présélection de 2 électrons

- * 2 electrons avec $M_{ee} > 18 \text{ GeV/c}^2$
 - masse invariante : accord données /

processus MS et QCD

- estimation du nombre d'événements
 QCD : méthode du nombre
 d'événements de même signe
- * M_{ee} < 80 GeV/c² : anti Z→ee

Sélection d'au moins I tau hadronique

- * au moins I τ hadronique de type I ou 2, identifié avec NN, veto anti- electrons et muons appliqués
- * $\mathbb{E}_T / \sqrt{SE_T} > 1.5$
 - → signal possède E_T modérée

→ prends en compte les fluctuations statistiques de mesure d'énergie des jets

→ supprime également Z Drell-Yan a basse \mathbb{E}_T

0 événements sélectionnés pour 1±1.32 attendus des processus du MS et bruits de fond instrumentaux

Limites préliminaires (I)

espace des paramètres mSUGRA avec le stau plus léger que χ_1^{\pm} : tan $\beta = 10$, $\mu > 0$, $m_0 = 80$, $A_0 = 0$ => taus supplémentaires de la cascade

~ 2 - 4 événements sélectionnés dans le signal avec une efficacité de ~ 2%

Limites préliminaires (II)

$$\tan\beta = 5, \ \mu > 0, \ A_0 = 0$$

Améliorations possibles / perspectives au Tevatron

- Travail en commun avec Anne-Marie Magnan et Daniela Kaefer : paramétrisation des triggers, identification des particules, détermination des efficacités, contrôle des bruits de fond QCD et de la MET ... pour 400 pb⁻¹ !
- Etude du facteur correctif pour l'identification des taus sur plus de données. Evaluation du bruit de fond muonique à partir des données (cf analyse Z→TT)

A plus long terme, limites attendues pour Ifb⁻¹ : exemple $\tan\beta = 5$, $\mu > 0$, $A_0 = 0$, m0=50

Perspectives au LHC : example RpV avec couplage λ_{233}

Etude CMS (1999/53) fondée sur le nombre de leptons isolés (e ou μ) pas de τ -id hadronique :

Contours de découverte à 5 σ pour 10⁴ pb⁻¹: visibilité susy : m(squark) →1.7 TeV m(sgluino) \rightarrow 1.5–2.5 TeV m_{1/2} (GeV) 1200 8(2500) $\lambda_{121} = 0.05$ 1000 Â(2000) $\lambda_{233} = 0.06$ 800 . g(1500) 600 R(1000) 400 200ĝ(500) 0 800 1000 1200 1400 400 600 1600 1800 2000 m₀ (GeV)

Autre analyse RPV en cours : recherche de production de paires stops (Arnaud Gay)

- Si λ'_{33k} les squarks top peuvent se désintégrer directement en particules du MS
- k=3 : le stop se désintègre en l tau et un b : $pp \rightarrow t_1 t_1 \rightarrow bb \tau^+ \tau^-$
- Bonne topologie pour la recherche : bbτ⁺τ⁻→bblτ_{hadr} (l=e ou μ)
- Etude faite dans CDF au Runl avec 106 pb⁻¹: $t_1 > 122 \text{GeV/c}^2$ a 95% C.L. pour $\beta(t_1 \rightarrow \tau b) = 1$

Status recherche de production de paires stops (Arnaud Gay)

- Pour l'instant I= e analyse sur le skim EMITRK, ensuite I= μ
- Norm Buchanan recherche la production de leptoquarks de 3eme génération : LQ3+LQ3 \rightarrow b $\bar{b}\tau^{+}\tau^{-}$ i.e. la même signature \rightarrow collaboration pour la mise en oeuvre d'une procédure générique de recherche de la production de paires X \rightarrow bT
- Jusqu'à présent :
 - génération du signal avec SUSYGEN
 - Premier processing des données (identification des leptons, jets, pour les τ hadroniques utilisation des NN)
- <u>Bientôt :</u>
 - Monte-Carlo des bruits de fond :W+jets, Z+jets, tt comparaison data/MC
 - Implémentation du b-tagging

Conclusion

- Analyse préliminaire de recherche de particules supersymétriques avec R-parité violée et couplage utilisant la technique des réseaux de neurones pour l'identifiaction des taus hadroniques
- Résultats encourageants dans l'espace des paramètres ou le stau plus léger que le χ_1^{\pm}
- Améliorations en cours avec Anne-Marie et Daniela pour une luminosité intégrée de 400 pb⁻¹

Erreurs systématiques :

RPV search with λ_{133}

Luminosity 6.5 % backgrounds 5% – 8% $\epsilon_{data}/\epsilon_{MC}$ (from τ -Id) 12.5 % $\epsilon_{data}/\epsilon_{MC}$ (from electron-Id) 2 % Trigger up to 7 %

~ 20 % for signal

- $\epsilon_{data}/\epsilon_{MC}$ (from τ -Id) determined from NN efficiency in data using fit on pT shape to estimate $Z \rightarrow \tau \tau$
- errors on background processes from cross sections errors