γ -Jet Studies for JES

V. Bhatnagar LAL, Orsay

Calibration Working Week – Paris September 27th, 2000

Introduction

• Particle level or true jet energy from measured jet energy

$$E_{\rm jet}^{
m ptcl} = \frac{E_{
m jet}^{
m meas} - E_{
m O}(\mathcal{R}, \eta, \mathcal{L})}{R_{
m jet}(\mathcal{R}, \eta, E)S(\mathcal{R}, \eta, E)}$$

- R_{jet} term (energy response)
 - function of jet energy after offset subtraction
 - second order dependence on jet algorithm cone size \mathcal{R}
 - dependent on detector pseudorapidity
- Determination of jet response
- Response dependencies

γ +jet Method

- Direct measurement: Conservation of p_T in photon+jet events
- Definition:
 - \rightarrow 1 photon balanced in p_T by 1 (or more) jets
 - \rightarrow using E_T present in the event, defined as

$$\overrightarrow{E}_T = -\left(\sum_i E_{x_i}, \sum_i E_{y_i}\right)$$

- ideal case $E_T \neq 0 \Rightarrow \text{presence or } \nu\text{'s \& high-}p_T \text{ μ's}$
- real Detector $E_T \neq 0$ measures the overall imbalance of E_T in Calorimeter

MPF Technique

"using this transverse energy $imbalance, R_{\rm jet}$ response is measured relative to precisely known γ response "

In γ -jet events:

Particle level or True γ and recoil E_T satisfy

$$\vec{E}_{T\gamma} + \vec{E}_{Trecoil} = 0. \tag{1}$$

Or in real world

$$R_{\text{em}} \vec{E}_{T\gamma} + R_{\text{recoil}} \vec{E}_{T\text{recoil}} = - \vec{E}_{T}$$

(For γ to be EM Scale corrected $R_{\rm em} = 1$)

$$\vec{E}_{T\gamma} + R_{\text{recoil}} \vec{E}_{T\text{recoil}} = -\vec{E}_{T} \Rightarrow$$

$$E_{T\gamma} + R_{\text{recoil}} \hat{n}_{T\gamma} \cdot \vec{E}_{T\text{recoil}} = -\hat{n}_{T\gamma} \vec{E}_{T} \Rightarrow$$

$$1 + R_{\text{recoil}} \frac{\hat{n}_{T\gamma} \cdot \vec{E}_{T\text{recoil}}}{E_{T\gamma}} = -\frac{\hat{n}_{T\gamma} \vec{E}_{T}}{E_{T\gamma}} .$$

MPF contd. ...

using (1), we have

$$R_{\text{recoil}} = 1 + \frac{\overrightarrow{E}_T \cdot \hat{n}_{T\gamma}}{E_{T\gamma}}$$

$$= 1 + MPF$$

- \rightarrow MPF: Missing E_T Projection Fraction
- $\rightarrow \not E_T$ is the missing E_T after Photon correction
 - In γ -jet two body process with no offset and showering $R_{\text{recoil}} \Rightarrow \frac{E_{\text{jet}}^{\text{meas}}}{E_{\text{jet}}^{\text{ptcl}}}$
 - Otherwise $R_{\rm recoil}$ is $R_{\rm jet}$, the energy response of the Calorimeter to jets (jet \rightarrow the leading jet and $\Delta\phi_{\gamma \rm jet} \approx \pi$)

Energy Estimator: E'

- $\triangleright R_{\rm jet}$ is measured using conservation of E_T (or p_T)
- \triangleright Response is dependent on jet energy rather than E_T :
 - Particle composition of jets &
 - e/π are energy dependent
- \triangleright Measure response as a function of energy (i.e. $E_{\rm jet}^{\rm meas}$)
- ▶ Such measurement introduces biases:
 - a. Trigger & reconstruction thresholds
 - b. Photon production cross section
 - c. Photon and jet energy resolution

Biases and smearing effects \rightarrow Eliminated by binning response in a better measured quantity, correlated with $E_{\rm jet}^{\rm meas}$, E' – the jet energy estimator.

$$E' = E_{T\gamma} \cdot \cosh(\eta_{\rm jet})$$

- \rightarrow E' would be particle energy of jet in case of two body γ -jet process
- $\rightarrow E_{T\gamma}$ (after EM correction) represents parent parton E_T
- \rightarrow both are well measured
 - dependence of R_{jet} on $E_{\text{jet}}^{\text{meas}}$ by measuring average $E_{\text{jet}}^{\text{meas}}$ in each E' bin

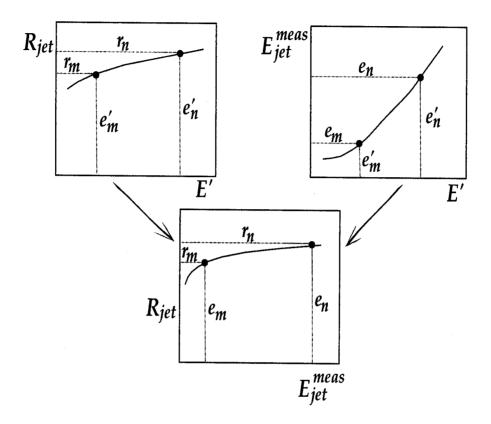


Figure 1: E' mapping to $E_{\rm jet}^{\rm meas}$.

Test of MPF Method

- using collider γ -jet data and a **parametric** simulation
 - simulation generates γ -jet events according to a cross section with a given E_T dependence
 - energies of γ and the jet are smeared and scaled with energy resolutions and responses measured from data
- simulation results
 - show E' controlling the smearing effects (from jet energy resolution)
 - unbiased measurement of jet energy response (from E_T dependence of photon cross section)

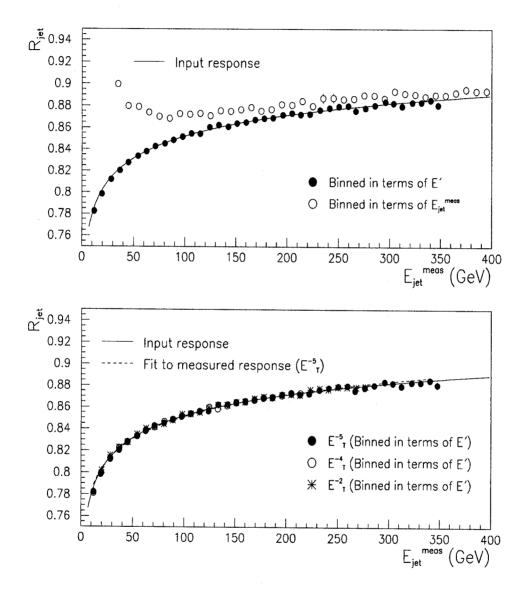


Figure 2: Parametric simulation of the $R_{\rm jet}$ measurement.

Response Dependencies

Photon Sample Selection

- γ -jet sample had direct photon plus events with 1 jet contained in EM Cal.
- General cuts:
 - 1 or more EM cluster
 - no events with noisy cells
 - Main Ring events removed
 - veto bremsstrahlug photons from cosmic muons
 - require |z| < 70 cm
 - $\mid \eta \mid < 1$ or 1.6 $< \mid \eta \mid < 2.5$ for EM (detector)
 - at least 1 jet, leading jet | η |< 0.7 for CC and 1.6 <| η |< 2.5 for EC

- Instrumental background A γ or a pair of photons from highly EM jets not isolated from hadronic energy.
 - fraction of cluster E_T in the EM layers, EMF
 - cluster isolation, f_{iso} :

$$f_{iso} = \frac{E_{tot}(R=0.4) - E_{em}(R=0.2)}{E_{em}(R=0.2)}$$

- total charge in transition radiation detector
- presence of a track
- ionization in the central tracking chambers
- above 3 used in conjunction with $E_{T\gamma} > 25 \text{ GeV}$ if $E_T/E_{T\gamma} > 0.65$ otherwise only 1 required.

0.7% and $\lesssim 0.5\%$ are the remaining biases on $R_{\rm jet}$ from Inst. and Phys. backgrounds respectively.

• Topology Cuts

- $-R_{jet} = R_{recoil}$ is exact for 2 body process only
- Events containing more than 1
 reconstructed jets along with clusters not
 reconstructed as jets → systematic error
 to response
- requiring $\Delta \phi > 2.8$ between photon and leading jet cuts on bias
- $-\approx 0.5-1\%$ bias remains
- Multiple Interaction Cuts
 - additional interactions reduce the accuracy of the vertex determination

- higher jet pseudorapidity yields large E' and lower jet E_T
- E_T increases in jet direction and lowering the measured response
- studied using low luminosity sample with single interaction cut
- residual luminosity bias to response after this is estimated < 0.25% by measuring response as a function of luminosity for various E' bins in CC and EC

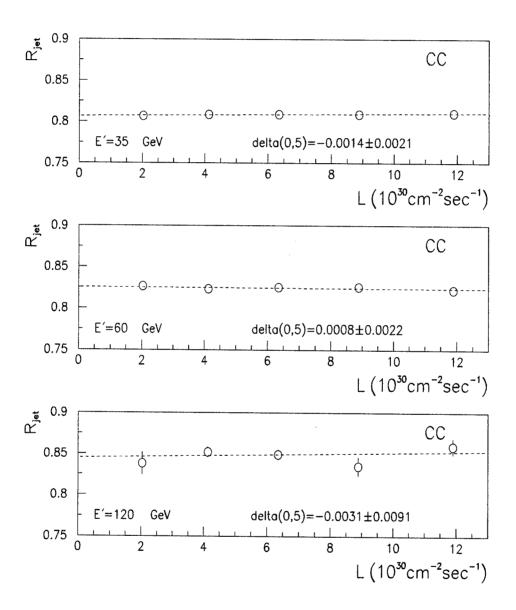


Figure 3: Response as a function of luminosity for CC jets.

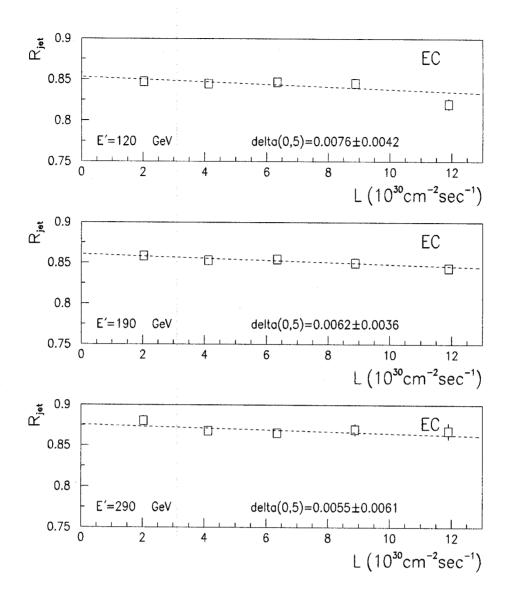


Figure 4: Response Vs luminosity for EC jets.

Rapidity & Reconstruction Dependence

- need accuracy in JES at all rapidities so η dependent correction is derived
- ullet cryostat factor and IC corrections applied to the jet energy and the event E_T
- since corrections are done to physics objects, not possible to recalculate the event E_T

$$\vec{E}_{T}^{\text{cr}} = \vec{E}_{T}^{\text{ms}} + \sum_{\gamma} \left(\vec{E}_{T\gamma}^{\text{ms}} - \vec{E}_{T\gamma}^{\text{cr}} \right) + \sum_{\text{jet}} \left(\vec{E}_{T\text{jet}}^{\text{ms}} - \vec{E}_{T\text{jet}}^{\text{cr}} \right)$$

• E_T correction depends on the jet algorithm as reconstructed objects are used (large cone $\mathcal{R} = 0.7$ algorithm used for)

- Cryostat Factor & IC Correction
 - cryostat factor $F_{cry} = R_{jet}^{EC}/R_{jet}^{CC}$
 - F_{cry} measured for the CC and EC data overlap
 - $F_{cry}^N/F_{cry}^S = 0.997 \pm 0.003$ show F_{cry} same for both EC's within errors
 - independence of F_{cry} on E' allows using EC data to extend the range of CC response measurement
 - IC covers $0.8 < |\eta| < 1.6$ and least instrumented region of Cal.
 - IC response correction is measured by a smooth interpolation through it using R_{jet} vs η measurement in CC-EC from γ -jet and jet-jet events

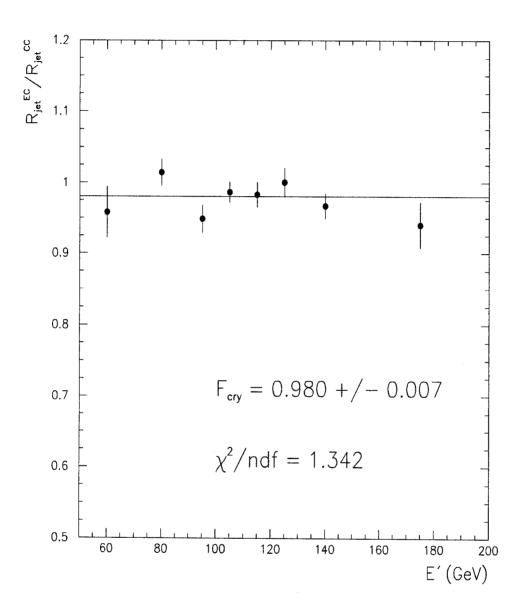


Figure 5: Cryostat factor Vs E'.

Energy Dependence We know R_{jet} is energy dependent.

- for $E' \lesssim 100 \text{ GeV } R_{jet}$ is determined from low E_T photons and CC jets ($|\eta| < 0.7$)
- For high $E'(\gtrsim 100 \text{GeV})$, R_{jet} is measured from EC jets (after F_{cry} and η corrections)
- Low- E_T Bias arising from reconstruction and resolution effects
 - jet reconstruction E_T threshold is 8 GeV with jet fractional E_T resolution about 50%
 - low E_T jets fluctuate to higher values
 - jets which fluctuate below 8 GeV are not reconstructed so this biases the average jet E_T to higher values \Rightarrow
 - lower E_T values thus biasing the response to higher values



Figure 6: Low- E_T bias Vs E_{Tjet} .

 this bias is measured using the photon data sample:

$$R_{bias} = \frac{R_{jet(\geq 1)}}{R_{jet(nojet)}}$$

- Response vs E'
 - after low- E_T bias, cryo factor and IC corrections R_{jet} is recallulated as a function of E'
 - mapping is obtained between E' and the av. jet energy.

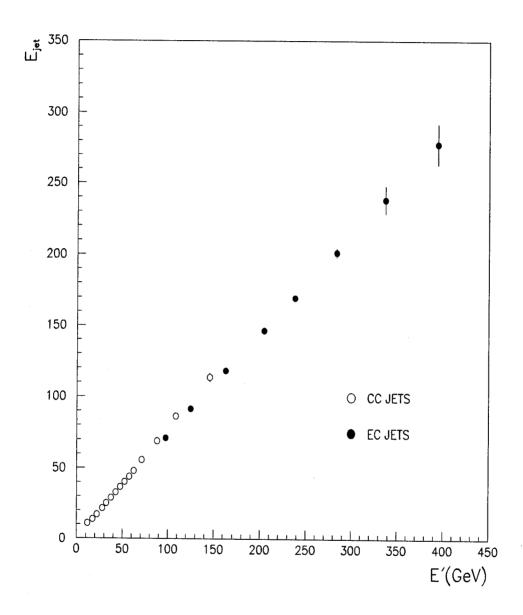


Figure 7: E_{Tjet}^{meas} versus E^{\prime} for 0.7 cone.